Refine Your Search

Topic

Author

Search Results

Technical Paper

Comparison of ATD to PMHS Response in the Under-Body Blast Environment

2015-11-09
2015-22-0017
A blast buck (Accelerative Loading Fixture, or ALF) was developed for studying underbody blast events in a laboratory-like setting. It was designed to provide a high-magnitude, high-rate, vertical loading environment for cadaver and dummy testing. It consists of a platform with a reinforcing cage that supports adjustable-height rigid seats for two crew positions. The platform has a heavy frame with a deformable floor insert. Fourteen tests were conducted using fourteen PMHS (post mortem human surrogates) and the Hybrid III ATD (Anthropomorphic Test Device). Tests were conducted at two charge levels: enhanced and mild. The surrogates were tested with and without PPE (Personal Protective Equipment), and in two different postures: nominal (knee angle of 90°) and obtuse (knee angle of 120°). The ALF reproduces damage in the PMHS commensurate with injuries experienced in theater, with the most common damage being to the pelvis and ankle.
Technical Paper

Conceptual Design and Weight Optimization of Aircraft Power Systems with High-Peak Pulsed Power Loads

2016-09-20
2016-01-1986
The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged. Thus, in order to maintain the weight advantage of MEA and to keep the normal functionality of the aircraft power system in the presence of a high-peak pulsed power load, this paper proposes a novel multidisciplinary weight optimization technique.
Technical Paper

Control Strategy Development for Parallel Plug-In Hybrid Electric Vehicle Using Fuzzy Control Logic

2016-10-17
2016-01-2222
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently developing a control strategy for a parallel plug-in hybrid electric vehicle (PHEV). The hybrid powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. Fuzzy rule sets determine the torque split between the motor and the engine using the accelerator pedal position, vehicle speed and state of charge (SOC) as the input variables. The torque producing components are a 280 kW V8 L83 engine with active fuel management (AFM) and a post-transmission (P3) 100 kW custom motor. The vehicle operates in charge depleting (CD) and charge sustaining (CS) modes. In CD mode, the model drives as an electric vehicle (EV) and depletes the battery pack till a lower state of charge threshold is reached. Then CS operation begins, and driver demand is supplied by the engine operating in V8 or AFM modes with supplemental or loading torque from the P3 motor.
Technical Paper

Design of an All-Revolute, Linkage-Type, Constant-Velocity Coupling

1995-09-01
952133
This paper describes a design methodology for a three degree-of-freedom, linkage-based constant-velocity coupling. This coupling resembles the Clemens coupling patented in 1872 and has evolved from the authors' previous research in parallel mechanisms. This coupling contains only revolute joints and is therefore likely to be more durable and less prone to manufacturing errors than conventional higher-pair couplings. The kinematic configuration, based on the symmetric double octahedral Variable Geometry Truss mechanism (figure 2), has many inherent traits that make it ideal for application to industrial uses. Its parallel design of simple links and revolute joints provide it with high strength, rigidity, and light-weight characteristics. It has a link-joint construction that allows its geometry to be varied for specific applications, such as producing high angular deflection between the input and output shafts.
Technical Paper

Developing a Methodology to Synthesize Terrain Profiles and Evaluate their Statistical Properties

2011-04-12
2011-01-0182
The accuracy of computer-based ground vehicle durability and ride quality simulations depends on accurate representation of road surface topology as vehicle excitation data since most of the excitation exerted on a vehicle as it traverses terrain is provided by the terrain topology. It is currently not efficient to obtain accurate terrain profile data of sufficient length to simulate the vehicle being driven over long distances. Hence, durability and ride quality evaluations of a vehicle depend mostly on data collected from physical tests. Such tests are both time consuming and expensive, and can only be performed near the end of a vehicle's design cycle. This paper covers the development of a methodology to synthesize terrain profile data based on the statistical analysis of physically measured terrain profile data.
Technical Paper

Development & Integration of a Charge Sustaining Control Strategy for a Series-Parallel Plug-In Hybrid Electric Vehicle

2014-10-13
2014-01-2905
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT is designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle.
Technical Paper

Development and Testing of a Hybrid Vehicle Energy Management Strategy

2023-04-11
2023-01-0552
An energy management strategy for a prototype P4 parallel hybrid Chevrolet Blazer is developed for the EcoCAR Mobility Challenge. The objective of the energy management strategy is to reduce energy consumption while maintaining the drive quality targets of a conventional vehicle. A comprehensive model of the hybrid powertrain and vehicle physics is constructed to aid in the development of the control strategy. To improve fuel efficiency, a Willans line model is developed for the conventional powertrain and used to develop a rule-based torque split strategy. The strategy maximizes high efficiency engine operation while reducing round trip losses. Calibratable parameters for the torque split operating regions allow for battery state of charge management. Torque request and filtering algorithms are also developed to ensure the hybrid powertrain can smoothly and reliably meet driver demand.
Technical Paper

Development and Validation of an E85 Split Parallel E-REV

2011-04-12
2011-01-0912
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended-range hybrid electric vehicle. The competition requires participating teams to improve and redesign a stock Vue XE donated by GM. The result of this design process is an Extended-Range Electric Vehicle (E-REV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an estimated all electric range of 69 km (43 miles) [1].
Technical Paper

Development of Auditory Warning Signals for Mitigating Heavy Truck Rear-End Crashes

2010-10-05
2010-01-2019
Rear-end crashes involving heavy trucks occur with sufficient frequency that they are a cause of concern within regulatory agencies. In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks which resulted in 135 fatalities. As part of the Federal Motor Carrier Safety Administration's (FMCSA) goal of reducing the overall number of truck crashes, the Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Researchers also utilized what had been learned in the rear-end crash avoidance work with light vehicles that was conducted by the National Highway Traffic Safety Administration (NHTSA) with Virginia Tech Transportation Institute (VTTI) serving as the prime research organization. ERS crash countermeasures investigated included passive conspicuity markings, visual signals, and auditory signals.
Technical Paper

Development of a Multi-Disciplinary Optimization Framework for Nonconventional Aircraft Configurations in PACELAB APD

2015-09-15
2015-01-2564
1 Most traditional methods and equations for estimating the structural and nonstructural weights and aerodynamics used at the aircraft conceptual design phase are empirical relations developed for conventional tube-and-wing aircraft. In a computation-heavy design process, such as Multidisciplinary Design and Optimization (MDO) simplicity of calculation is paramount, and for conventional configurations the aforementioned approaches work well enough for conceptual design. But, for non-traditional designs such as strut-braced winged aircraft, empirical data is generally not available and the usual methods can no longer apply. One solution to this is a movement toward generalized physics-based methods that can apply equally well to conventional or non-traditional configurations.
Technical Paper

Development of a Willans Line Rule-Based Hybrid Energy Management Strategy

2022-03-29
2022-01-0735
The pre-prototype development of a simulated rule-based hybrid energy management strategy for a 2019 Chevrolet Blazer RS converted parallel P4 full hybrid is presented. A vehicle simulation model is developed using component bench data and validated using EPA-reported dynamometer fuel economy test data. A combined Willans line model is proposed for the engine and transmission, with hybrid control rules based on efficiency-derived engine power thresholds. Algorithms are proposed for battery state of charge (SOC) management including engine loading and one pedal strategies, with battery SOC maintained within 20% to 80% safe limits and charge balanced behavior achieved. The simulated rule-based hybrid control strategy for the hybrid vehicle has an energy consumption reduction of 20% for the Hot 505, 3.6% for the HwFET, and 12% for the US06 compared to the stock vehicle.
Technical Paper

Does the Interaction between Vehicle Headlamps and Roadway Lighting Affect Visibility? A Study of Pedestrian and Object Contrast

2020-04-14
2020-01-0569
Vehicle headlamps and roadway lighting are the major sources of illumination at night. These sources affect contrast - defined as the luminance difference of an object from its background - which drives visibility at night. However, the combined effect of vehicle headlamps and intersection lighting on object contrast has not been reported previously. In this study, the interactive effects of vehicle headlamps and overhead lighting on object contrast were explored based on earlier work that examined drivers’ visibility under three intersection lighting designs (illuminated approach, illuminated box, and illuminated approach + box). The goals of this study were to: 1) quantify object luminance and contrast as a function of a vehicle’s headlamps and its distance to an intersection using the three lighting designs; and, 2) to assess whether contrast influences visual performance and perceived visibility in a highly dynamic intersection environment.
Technical Paper

EcoRouting Strategy Using Variable Acceleration Rate Synthesis Methodology

2018-04-16
2018-01-5005
This paper focuses on the analysis of an EcoRouting system with minimum and maximum number of conditional stops. The effect on energy consumption with the presence and absence of road-grade information along a route is also studied. An EcoRouting system has been developed that takes in map information and converts it to a graph of nodes containing route information such as speed limits, stop lights, stop signs and road grade. A variable acceleration rate synthesis methodology is also introduced in this paper that takes into consideration distance, acceleration, cruise speed and jerk rate as inputs to simulate driver behavior on a given route. A simulation study is conducted in the town of Blacksburg, Virginia, USA to analyze the effects of EcoRouting in different driving conditions and to examine the effects of road grade and stop lights on energy consumption.
Technical Paper

Effects of Commercial Truck Configuration on Roll Stability in Roundabouts

2015-09-29
2015-01-2741
This paper presents the results of a study on the effect of truck configurations on the roll stability of commercial trucks in roundabouts that are commonly used in urban settings with increasing frequency. The special geometric layout of roundabouts can increase the risk of rollover in high-CG vehicles, even at low speeds. Relatively few in-depth studies have been conducted on rollover stability of commercial trucks in roundabouts. This study uses a commercially available software, TruckSim®, to perform simulations on four truck configurations, including a single-unit truck, a WB-67 semi-truck, the combination of a tractor with double 28-ft trailers, and the combination of a tractor with double 40-ft trailers. A single-lane and multilane roundabout are modeled, both with a truck apron. Three travel movements through the roundabouts are considered, including right turn, through-movement, and left turn.
Technical Paper

Energy Modeling of Deceleration Strategies for Electric Vehicles

2023-04-11
2023-01-0347
Rapid adoption of battery electric vehicles means improving the energy consumption and energy efficiency of these new vehicles is a top priority. One method of accomplishing this is regenerative braking, which converts kinetic energy to electrical energy stored in the battery pack while the vehicle is decelerating. Coasting is an alternative strategy that minimizes energy consumption by decelerating the vehicle using only road load. A battery electric vehicle model is refined to assess regenerative braking, coasting, and other deceleration strategies. A road load model based on public test data calculates tractive effort requirements based on speed and acceleration. Bidirectional Willans lines are the basis of a powertrain model simulating battery energy consumption. Vehicle tractive and powertrain power are modeled backward from prescribed linear velocity curves, and the coasting trajectory is forward modeled given zero tractive power.
Technical Paper

Energy-Efficient and Context-Aware Computing in Software-Defined Vehicles for Advanced Driver Assistance Systems (ADAS)

2024-04-09
2024-01-2051
The rise of Software-Defined Vehicles (SDV) has rapidly advanced the development of Advanced Driver Assistance Systems (ADAS), Autonomous Vehicle (AV), and Battery Electric Vehicle (BEV) technology. While AVs need power to compute data from perception to controls, BEVs need the efficiency to optimize their electric driving range and stand out compared to traditional Internal Combustion Engine (ICE) vehicles. AVs possess certain shortcomings in the current world, but SAE Level 2+ (L2+) Automated Vehicles are the focus of all major Original Equipment Manufacturers (OEMs). The most common form of an SDV today is the amalgamation of AV and BEV technology on the same platform which is prominently available in most OEM’s lineups. As the compute and sensing architectures for L2+ automated vehicles lean towards a computationally expensive centralized design, it may hamper the most important purchasing factor of a BEV, the electric driving range.
Technical Paper

Estimating Benefits of LDW Systems Applied to Cross-Centerline Crashes

2018-04-03
2018-01-0512
Objective: Opposite-direction crashes can be extremely severe because opposing vehicles often have high relative speeds. The most common opposite direction crash scenario occurs when a driver departs their lane driving over the centerline and impacts a vehicle traveling in the opposite direction. This cross-centerline crash mode accounts for only 4% of all non-junction non-interchange crashes but 25% of serious injury crashes of the same type. One potential solution to this problem is the Lane Departure Warning (LDW) system which can monitor the position of the vehicle and provide a warning to the driver if they detect the vehicle is moving out of the lane. The objective of this study was to determine the potential benefits of deploying LDW systems fleet-wide for avoidance of cross-centerline crashes. Methods: In order to estimate the potential benefits of LDW for reduction of cross-centerline crashes, a comprehensive crash simulation model was developed.
Technical Paper

Estimating the Real-World Benefits of Lane Departure Warning and Lane Keeping Assist

2022-03-29
2022-01-0816
Four crash modes are overrepresented in traffic fatalities: run-off-road crashes, non-tracking run-off-road crashes, head-on crashes, and pedestrian crashes. Two advanced driver assist systems developed to help prevent tracking run-off-road crashes and head-on crashes are lane departure warning (LDW) and lane keeping assist (LKA). LDW acts to warn the driver when they are encroaching the lane boundary, whereas LKA performs automatic steering to prevent the vehicle from departing the lane. The objective of this research was to use real-world crash data to estimate current LDW and LKA system effectiveness in reducing run-off-road crashes and cross-centerline head-on crashes. All passenger vehicles that experienced a lane departure from 2017 to 2019 in the Crash Investigation Sampling System (CISS) were analyzed.
Technical Paper

Estimation of Vehicle Tire-Road Contact Forces: A Comparison between Artificial Neural Network and Observed Theory Approaches

2018-04-03
2018-01-0562
One of the principal goals of modern vehicle control systems is to ensure passenger safety during dangerous maneuvers. Their effectiveness relies on providing appropriate parameter inputs. Tire-road contact forces are among the most important because they provide helpful information that could be used to mitigate vehicle instabilities. Unfortunately, measuring these forces requires expensive instrumentation and is not suitable for commercial vehicles. Thus, accurately estimating them is a crucial task. In this work, two estimation approaches are compared, an observer method and a neural network learning technique. Both predict the lateral and longitudinal tire-road contact forces. The observer approach takes into account system nonlinearities and estimates the stochastic states by using an extended Kalman filter technique to perform data fusion based on the popular bicycle model.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
X